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Background 

Engineering components are increasingly complex in composition and structure and increasingly 
multifunctional: indeed, it is only through complexity and multifunctionality that we can satisfy 
the stringent performance requirements associated with critical defense applications. However, 
these complex, multifunctional systems no longer admit intuitive analysis of trade-off 
considerations: we must pursue optimization — optimal choice of material, configuration, and 
deployment — to realize the potential of these new approaches. 

The optimization, control, and characterization of an engineering component or system requires 
the prediction of certain "quantities of interest," or performance metrics, which we shall denote 
outputs — for example deflections, maximum stresses, maximum temperatures, heat transfer 
rates, flowrates, or lifts and drags. These outputs are typically expressed as functionals of field 
variables associated with a parametrized partial differential equation which describes the 
physical behavior of the component or system. The parameters, which we shall denote inputs, 
serve to identify a particular "configuration" of the component: these inputs may represent 
design or decision variables, such as geometry — for example in optimization studies; control 
variables, such as actuator power — for example in real-time applications; or characterization 
variables, such as physical properties — for example in inverse problems. We thus arrive at an 
implicit input-output relationship, the evaluation of which demands solution of the underlying 
partial differential equation. 

Our goal is the development of computational methods that permit rapid and reliable evaluation 
of this partial-differential-equation-induced input-output relationship in the limit of many queries 
— that is, in the design, optimization, control, and characterization contexts. The "many query" 
limit has certainly received considerable attention. Our approach is based on the reduced-basis 
method, first introduced in the late 1970s for nonlinear structural analysis [1,2], and subsequently 
developed more broadly in the 1980s and 1990s [3-7]. The reduced-basis method recognizes 
that the field variable is not, in fact, some arbitrary member of the infinite-dimensional solution 
space associated with the partial differential equation; rather, it resides on a much lower- 
dimensional manifold induced by the parametric dependence. 

The reduced-basis approach, as earlier articulated, is local in parameter space in both practice 
and theory. To wit, Lagrangian or Taylor approximation spaces for the low-dimensional 
manifold are typically defined relative to a particular parameter point: the associated a/»ric»r/ 
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convergence theory relies on asymptotic (implicit function theorem) arguments in sufficiently 
small neighborhoods; the computational improvements — relative to conventional (say) finite 
element approximation — are often quite modest [4]. Our work [8-12] differs from these earlier 
efforts in several important ways: first, we develop (in some cases, provably) global 
approximation spaces; second, we introduce rigorous a posteriori error estimators; and third, we 
exploit offlinelonline computational decompositions (see [7] for an earlier application of this 
strategy within the reduced-basis context). These three ingredients allow us to reliably decouple 
the generation and projection stages of reduced-basis approximation, thereby effecting 
computational economies of several orders of magnitude. 

First, the error in the reduced-basis approximation typically vanishes exponentially as a function 
ofN, the dimension of the reduced-basis space: sufficient accuracy can thus be obtained with 
only A^= O(10)-O(100) degrees of freedom. Second, we can rigorously and sharply bound (a 
posteriori) the error in the reduced-basis approximation of the outputs of interest, thus permitting 
optimal truncation — selection of (close to) the smallest N for which the desired error tolerance 
can be achieved. Third, we can decompose the computational effort into two stages: an 
expensive (offline) stage performed once; and an inexpensive (online) stage performed many 
times. The operation count for the online stage — in which, given a new value of the input, we 
calculate the output and associated error bound — depends only on A^ (typically very small) and 
the parametric complexity of the operator. This very low marginal cost is critical in the 
optimization context. 

Particular Achievements 

Non-coercive Problems 

In our earlier work, we treated primarily coercive operators; in particular, our earlier approaches 
did not permit rigorous a posteriori error estimation for non-coercive operators. We recently 
have developed [11] and subsequently refined [13; 14] procedures that now permit rigorous a 
posteriori error estimation for noncoercive problems — such as the Helmholtz equation 
(reduced-wave equation) that arises in acoustics, elastodynamics, and electromagnetics. The 
critical new ingredient is a lower bound for the inf-sup constant (singular value) that 
characterizes the stability of the operator — and hence controls the relationship between the dual 
norm of the residual and the error. Our (most efficient) approach is based on a piecewise- 
constant or piecewise-linear construction that exploits classical concavity properties of the inf- 
sup eigenproblem [14]. Examples of Helmholtz reduced-basis approximation and associated a 
posteriori error estimation — and application to inverse problems in elasticity — are given in 
[14]. 

Non-linear Problems 

In our earlier work, we treated primarily linear operators; in particular, our earlier approaches [9] 
did not permit rigorous a posteriori error estimation for nonlinear problems (except in certain 
mono tonic cases [11]). We have recently developed approaches — at present restricted to 
quadratic nonlinearities such as the incompressible Navier-Stokes equations describing fluid 
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flow (though see below) — that do indeed permit rigorous a posteriori output bounds. The 
foundation is the Brezzi-Rappaz-Raviart theory for analysis of variational approximations of 
nonlinear partial differential equations [15]. The key computational ingredients are efficient 
offline-online evaluation of the dual norm of the residual (similar to the procedure we developed 
earlier for linear problems); adaptation of the non-coercive inf-sup lower bound described above 
to the nonlinear case; and quantitative calculation of the relevant Sobolev embedding constants 
characterizing the nonlinearity. The method is described in detail in [14; 16], with application to 
natural convection in an enclosure (a problem relevant to materials processing). 

Non-affine Problems 

Until recently, we could only treat partial differential equations that are (/) affine in the 
parameter, and (//) at most quadratically nonlinear in the state variable. Absent these 
assumptions, our offline-online decomposition breaks down. In fact, both of these restrictions 
can be addressed by a new "empirical interpolation" approach developed in collaboration with 
Professor Yvon Maday of University Paris VI [17]. In this approach, we replace general non- 
affine, nonlinear functions of the parameter, spatial coordinate, and state variable with collateral 
reduced-basis expansions. The critical ingredients of the approach are (/) good collateral 
reduced-basis samples and spaces, (ii) a stable and inexpensive online interpolation procedure by 
which to determine the collateral reduced-basis coefficients (as a function of the parameter), and 
(Hi) effective a posteriori error bounds with which to quantify the effect of the newly introduced 
truncation. With these techniques we can now efficiently and reliably consider many new 
parameter variations (e.g., general shape optimization) as well as many new classes of nonlinear 
phenomenon (e.g., radiation heat transfer [18]). (We note however that, in general, we do lose 
some rigor in our a posteriori error bounds.) 

Non-elliptic (Parabolic) Problems 

We have recently extended our reduced-basis and a posteriori error estimation procedures to 
parabolic problems — for example, the heat (transient conduction) equation. The essential 
ingredient is the identification of a new (parameter, time) variable in which to develop the 
reduced-basis approximation. The approach entails several key innovations relative to the 
elliptic case both as regards approximation (e.g., impulse sampling procedures that permit 
general temporal forcing functions — as arise in optimal control) and a posteriori error 
estimation (adjoint techniques that provide bounds for the error in particular outputs of interest as 
a function of time). The methods are further described — and applied to a model "blast 
deflector" problem — in [14]. 

Adaptive Sampling 

We have developed — in all the contexts above (including the temporal parabolic case) — 
efficient adaptive sampling procedures that permit us to construct (greedily) optimal samples 
that, in turn, yield rapidly convergent (and numerically stable) reduced-basis spaces. Given an 
initial parameter sample and associated approximation space, we can readily calculate — thanks 
to our fast error bounds — (an approximation to) both the maximum error over the parameter 
space and the location of the largest errors; this then serves to select the next points to be 
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included in the sample (and, ultimately, to terminate the approximation upon satisfaction of a 
given "worst-case" tolerance). These methods are, in essence, "POD-like" economization 
procedures [19] in which we need never form the vast majority of the snapshots. 

User Interfaces 

In the past [20] we have developed an extensive Web repository system to house online servers 
and an associated suite of (thin) clients by which to access these codes. In addition, in the 
current project, we have developed a simpler variant of this idea: MATLAB .m files which — 
for a particular partial differential equation, output(s), and input domain — (self-)contain the 
databases and online codes that, at the usual MATLAB command-line level, can then be invoked 
to provide the desired output and output error bound for any given input. In essence, we reduce 
Navier-Stokes to the computational (and user) complexity — and certainty — of "sin(x)." (We 
note that the development of the MATLAB .m file is time consuming, and is furthermore 
specific to each particular application; however, once in place, the response to the "end user" is 
quite literally real-time.) Examples of these MATLAB .m files are of course available to the 
sponsor upon request. 

Optimization 

The most common approach to the optimization of systems described by partial differential 
equations is to combine state-of-the-art optimization techniques — such as pattern search 
techniques, Sequential Linear/Quadratic Programming (SLP/SQP) approaches, or Newton 
Interior Point Methods (IPM) — with state-of-the-art partial differential equation discretization 
techniques — such as the finite element method. The best approaches (e.g., [21]) consider the 
optimization formulation and partial differential equation treatment in an integrated fashion. 
However, even these "best methods" remain quite expensive — a sufficiently accurate 
discretization may require hundreds of thousands of degrees of freedom — with computational 
times often measured in hours or even days. Further exacerbating the situation, realistic design 
exercises typically require many optimization cycles — corresponding to variations in the 
design, operation, and environment parameters that define the objectives and constraints. In the 
multifunctional context, these difficulties are even further amplified by the presence of a variety 
of different equations, objectives, and constraints that rarely admit any overarching simple 
structure. 

An alternative approach to the optimization of systems described by partial differential equation 
is to replace the (say) finite element discretization with a much lower order description. This 
description may take the form of a model based primarily on physical reasoning or empirical 
constructions, or of a formal approximation directly derived from the underlying partial 
differential equations. A variety of frameworks (e.g., [22]) have been proposed for the 
incorporation of these low order descriptions into the design and optimization context. The main 
outstanding difficulty is the lack of rigorous, sharp, inexpensive error estimators for the outputs 
which appear in the optimization statement. Absent such a measure of fidelity, either the model 
truncation must be chosen (arbitrarily) conservatively — thus compromising efficiency; or the 
model truncation may be chosen overly optimistically — thus compromising convergence, 
optimality, and feasibility (with respect to the exact mathematical description). 
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Our approach —reduced-basis-based optimization — is of course of the low-order- 
approximation variety. However, in contrast to earlier work, we provide — and incorporate into 
the optimization framework — rigorous error bounds that ensure reliability. In particular, in our 
optimization procedure we can (/) restrict attention to regions of the design space in which the 
model is provably accurate (or, alternatively, request adaptive improvement of the approximation 
as demanded by the optimization and design process), (ii) assess and control the suboptimality 
induced by the output approximation in the optimization results, and (iii), most importantly, 
rigorously ensure feasibility of the optimizers with respect to the exact mathematical description. 
The latter is particularly critical in real-time applications — in order to guarantee "safe" 
operation without recourse to (non-real-time) fiducial calculations. 

There are two main components to our approach: the reduced-basis approximation (and error 
bound) which replaces the classical finite element approximation; and the appropriate 
incorporation of this approximation into the optimization procedure. The former are manifested 
in the latter in two important ways: in model constraints that, based on our error estimators, 
restrict attention to regions of the design space in which the approximation may be trusted — 
trusted to provide good predictions, and to provide meaningful gradients and Hessians; and in 
performance constraints that, through our error estimators, ensure that all proposed optimizers 
are in fact feasible with respect to the exact (more precisely, a very high-order "truth" finite 
element approximation of the exact) solution of the partial differential equation. 

We do identify certain recommendations regarding the optimization procedure, and we provide 
the associated computational foundations. First, we recommend, given the smoothness of our 
problems (and approximations), that higher order information should be exploited; we thus 
develop efficient techniques for calculating the gradients and Hessians of our reduced-basis 
outputs and associated error estimators. Second, we recommend that the optimization procedure 
provide (intermediate) iterates that are strictly input-feasible, since violation of our "design- 
fidelity" constraints can lead to rapid divergence. And third, we recommend that, given the non- 
convex nature of our problems, the optimization procedure correctly avoid non-optimal 
stationary (saddle) points, and hence provide true (at least local) optimizers. An example that 
integrates all these components is described in [23]. 
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